

9. Acknowledgments

Books of this nature take years of rigorous work and the unwavering support of numerous friends and colleagues to produce and complete. This is our small way of thanking those who have supported us throughout the years:

To our main Guyanese field companions and trainees: Deokie "Jackie" Arjoon, Paul Benjamin, Festus Marco, Indranee Roopsind, Hemchandranauth Sambhu, Solomon "Jack" Garcia, Giuliano "Kinky" Seegobin (whose friendship and kind hospitality was really appreciated), and Reuben Williams, we owe you our greatest debt and on many occasions our laughter, through the sometimes difficult situations.

To friends who helped with logistics in Guyana: KP our taxi driver in Georgetown, and the Nyron Rahaman family at Menzies Landing, with a special thanks to Farida Rahaman for her hospitality and wonderful cooking; collectively you guys can organize the world!

To all the enthusiast porkknockers of Menzies Landing that collected specimens for us; thank you for taking time off from your gruelling day's work to run after a frog, lizard or snake.

To friends and colleagues who provided photographs that were used (or not) in some of the figures: Raffael Ernst (Technische Universität, Berlin), Philippe Gaucher (CNRS-Guyane, Cayenne), Marinus Hoogmoed (Museu Paraense Emílio Goeldi, Belém), Karl-Heinz Jungfer (Gaildorf), Christian Marty (Montjoly), and Andreas Schlüter (Staatliches Museum für Naturkunde, Stuttgart), we appreciate your efforts.

To friends and colleagues who provided call recordings that were used to generate oscillograms and spectrograms when no adequate recording was available from Kaieteur: Raffael Ernst, Philippe Gaucher, Karl-Heinz Jungfer, Christian Marty, and Andreas Schlüter, thank you for your support.

To Ross MacCulloch (Royal Ontario Museum, Ontario), Andreas Schlüter, and Celsa Señaris (Museo de Historia Natural La Salle, Caracas) for kindly supplying some literature, to Darrel Frost (American Museum of Natural History, New York) for permitting us to use a figure from one of his great papers, to Julien Cillis (Institut Royal des Sciences Naturelles de Belgique, Brussels) for technical assistance in Scanning Electron Microscopy, to César Barrio-Amorós (Fundación AndígenA, Mérida), Santiago Castroviejo-Fisher (Uppsala University, Uppsala), Raffael Ernst, Julian Faivovich (Museo Argentino de Ciencias Naturales, Buenos Aires), Taran Grant (Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre), Marinus Hoogmoed, Karl-Heinz Jungfer, Amy Lathrop (Royal Ontario Museum, Ontario), Ross MacCulloch, Les Minter (University of Limpopo, Limpopo), Brice Noonan (The University of Mississippi, Mississippi), Andreas Schlüter, Mark Wilkinson and David Gower (The Natural History Museum, London) for constructive and interesting discussions we owe an equally great debt.

For the loan or exchange of specimens under their care we thank Jon Campbell and Carl Franklin (University of Texas at Arlington, Arlington), Enrique La Marca

Tenki kulu (thank you in Patamona) to the Chenapou Community for welcoming us into their village, and to the following persons for sharing their knowledge and wisdom with us: Rupert Williams, Abel Albert, Edna Albert, David Anderson, Yvette Andrew, Les Benjamin, Silvie Benjamin, Saron Branch, Donald Daniels, Shirley Daniels, Susan Edward, Vincent Edwards, K. Edwin, Cassimiro Francisco, Jackson Fredricks, Henry Fredricks, Hildma Fredricks, Clement Jimmy, Lio John, Wendy John, Austin Kanichio, Linda Kanichio, Rufford Nagalla, Abel Marco, Jackie Marco, M.J. Marco, Samuel Marco, Shaquila Marco, Melvina Melville, Valerie Pablo, Septmus Simon, Jannis Skybar, Juliana Stephen, Linda Williams, and Stanley Williams.

Tenki kulu also to Melina Kalamandeen, Andrew Higgins, Ministry of Amerindian Affairs, George Simon at the Amerindian Research Unit, University of Guyana, Guyana Forestry Commission, Navin Roopnarine of the National Parks Commission, and Bhaleka Suelall of the Ministry of Agriculture Hydrometeorological Services – Guyana.

We also deeply acknowledge the Prime Minister of Guyana, The Honorable Samuel Hinds for his help and support, the Ambassador of Guyana in Brussels, His Excellency Patrick Gomes and his secretary Myrna Vincke and all the personnel of the Guyana Embassy in Brussels for their help in many ways, and Georges Lenglet (Institut Royal des Sciences Naturelles de Belgique, Brussels) for his support and collaboration in the Global Taxonomy Initiative research project.

Permission to conduct this study at Kaieteur National Park was granted by Shyam Nokta and Inge Nathoo of the Guyana National Parks Commission, with specimen verification conducted by the Department of Biology, University of Guyana, and research and collection permits issued by the Guyana Environmental Protection Agency. We cannot express how grateful we are for your help, oftentimes going beyond the call of duty to assist.

We are, of course, indebted to the Belgian Directorate-General of Development Cooperation for its generous financial support. The King Léopold III Fund for Nature Exploration and Conservation provided additional support.

The first author wishes to express gratitude to his partner Sylvie De Passe and his daughter Lili Kok for their patience during his long absences in the field without proper communication and during the (too) many hours spent at home in his study trying to complete this book.

Finally, we thank the editors of the AbcTaxa series for inviting us to produce this manual, Mark Wilkinson for helpful comments on the caecilian part of the text and Ron Heyer (Smithsonian Institution, Washington DC) for a critical review of a previous version of the manuscript.
10. About the authors

Philippe J. R. Kok (*1970) is involved in herpetological research in the Guiana Shield since 1996. His research interests include the systematics, biogeography and ecology of Neotropical herpetofauna. He currently concentrates his efforts on the phylogenetic relationships, systematics, biogeography and ecology of the Guiana Shield highlands herpetofauna. He has always been interested in collecting in poorly studied, remote and difficult to access areas, and in providing information on the distribution, abundance and habitat requirements of species for effective conservation planning and management. He is currently research associate at the Royal Belgian Institute of Natural Sciences and CITES expert (Reptiles and Amphibians) for the Belgian Government.

More information on his research may be found at http://www.philippekok.com

Michelle Kalamandeen (*1981), on the right on the photo, works as the Scientific Officer at the Centre for the Study of Biological Diversity at the Department of Biology, University of Guyana. She was a Commonwealth Scholar in 2004-2005 where she completed a Masters’ in Biodiversity Conservation & Management at the University of Oxford. She has been involved in herpetological research that involves indigenous peoples mainly at Shell Beach in the Northwestern region of Guyana since 2000. Through her work at Shell Beach, she is currently the Protected Areas, Education & Research Coordinator of the Guyana Marine Turtle Conservation Society. Her interests include protected area designation and management, the role of indigenous peoples in conservation, and species distribution and ecology.
11. Appendix – Taxonomic index

Species treated and page numbers that hold taxa descriptions are in bold, page numbers that hold species illustrations are in italics.

A

<table>
<thead>
<tr>
<th>Species</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adelophryne</td>
<td>25, 88, 148, 149, 150</td>
</tr>
<tr>
<td>Adelophryne gutturosa</td>
<td>66, 80, 100, 149, 151</td>
</tr>
<tr>
<td>Adelophryne patamona</td>
<td>148</td>
</tr>
<tr>
<td>Adenomera</td>
<td>213</td>
</tr>
<tr>
<td>Aechmea brassicoides</td>
<td>15, 16</td>
</tr>
<tr>
<td>Allobates</td>
<td>24, 216</td>
</tr>
<tr>
<td>Allobates granti</td>
<td>103</td>
</tr>
<tr>
<td>Allobates spumaponens</td>
<td>22, 103</td>
</tr>
<tr>
<td>Allophryne</td>
<td>23, 24, 80, 89, 110, 111</td>
</tr>
<tr>
<td>Allophryne ruthveni</td>
<td>107, 110, 111, 112, 113</td>
</tr>
<tr>
<td>Allophrynidae</td>
<td>22, 23, 24, 81, 111</td>
</tr>
<tr>
<td>Allopbyrinae</td>
<td>23</td>
</tr>
<tr>
<td>Alytidae</td>
<td>22</td>
</tr>
<tr>
<td>Ameeraga</td>
<td>216</td>
</tr>
<tr>
<td>Amphibia</td>
<td>17</td>
</tr>
<tr>
<td>Amphignathodontidae</td>
<td>25</td>
</tr>
<tr>
<td>Andira grandistipula</td>
<td>16</td>
</tr>
<tr>
<td>Annonaceae</td>
<td>15</td>
</tr>
<tr>
<td>Anomaloglossus</td>
<td>24, 72, 80, 88, 114, 115</td>
</tr>
<tr>
<td>Anomaloglossus beebei</td>
<td>16, 17, 72, 93, 105, 106, 109, 114, 115, 116, 117</td>
</tr>
<tr>
<td>Anomaloglossus cf. roraima</td>
<td>73</td>
</tr>
<tr>
<td>Anomaloglossus degranvillei</td>
<td>114</td>
</tr>
<tr>
<td>Anomaloglossus kaiei</td>
<td>96, 114, 115, 118, 119</td>
</tr>
<tr>
<td>Anura</td>
<td>20, 65</td>
</tr>
<tr>
<td>Araceae</td>
<td>15</td>
</tr>
<tr>
<td>Aromobates</td>
<td>24</td>
</tr>
<tr>
<td>Aromobatidae</td>
<td>22, 23, 24, 72, 73, 80, 93, 96, 103, 105, 106, 216</td>
</tr>
<tr>
<td>Arthropletidae</td>
<td></td>
</tr>
<tr>
<td>Ascaphus</td>
<td>18, 21</td>
</tr>
<tr>
<td>Atelopus</td>
<td>25, 88, 120, 121</td>
</tr>
<tr>
<td>Atelopus hoogmoedi</td>
<td>72, 107, 120, 121, 122, 123</td>
</tr>
<tr>
<td>Atelopus pulcher hoogmoedi</td>
<td>122</td>
</tr>
<tr>
<td>Atelopus spumarius hoogmoedi</td>
<td>122</td>
</tr>
<tr>
<td>Atelopus varius</td>
<td>21</td>
</tr>
<tr>
<td>Atretochoana eiselti</td>
<td>18</td>
</tr>
<tr>
<td>Atta</td>
<td>216</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Species</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batrachia</td>
<td>17</td>
</tr>
<tr>
<td>Batrachochytrium dendrobatidis</td>
<td>121</td>
</tr>
<tr>
<td>Bombinatoridae</td>
<td>22</td>
</tr>
<tr>
<td>Boulenegura taitanus</td>
<td>19</td>
</tr>
<tr>
<td>Brachycephalidae</td>
<td>22</td>
</tr>
<tr>
<td>Brevicepita</td>
<td>22</td>
</tr>
<tr>
<td>Brocinia micrantha</td>
<td>15, 17, 116, 172, 204</td>
</tr>
<tr>
<td>Brocinia reducta</td>
<td>16, 204</td>
</tr>
<tr>
<td>Bromeliaceae</td>
<td>15, 203</td>
</tr>
<tr>
<td>Bufo</td>
<td>131</td>
</tr>
<tr>
<td>Bufo guttatus</td>
<td>125, 131</td>
</tr>
<tr>
<td>Bufo valiceps</td>
<td>131</td>
</tr>
<tr>
<td>Bufo variegatus</td>
<td>131</td>
</tr>
<tr>
<td>Bufonidae</td>
<td>22, 23, 24, 25, 66, 70, 72, 73, 81, 98</td>
</tr>
<tr>
<td>Burmannia bicolor</td>
<td>15</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Species</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caeciliidae</td>
<td>19, 20</td>
</tr>
<tr>
<td>Calyptocephalellidae</td>
<td>22</td>
</tr>
<tr>
<td>Caudata</td>
<td>20</td>
</tr>
<tr>
<td>Centrolene</td>
<td>25, 86, 90, 103, 134, 143</td>
</tr>
<tr>
<td>Centrolene buckleyi</td>
<td>135</td>
</tr>
<tr>
<td>Centrolene geckoidum</td>
<td>135</td>
</tr>
<tr>
<td>Centrolene gorzulae</td>
<td>86, 90, 103, 134, 135, 136, 137</td>
</tr>
<tr>
<td>Centrolenidae</td>
<td>22, 23, 25, 66, 86, 87, 90, 103, 111</td>
</tr>
<tr>
<td>Ceratobatrachidae</td>
<td>22</td>
</tr>
<tr>
<td>Ceratophryidae</td>
<td>22</td>
</tr>
<tr>
<td>Cladina</td>
<td>15</td>
</tr>
<tr>
<td>Cladonia</td>
<td>15</td>
</tr>
<tr>
<td>Clathrotropis macrocarpa</td>
<td>15</td>
</tr>
<tr>
<td>Clusia</td>
<td>16</td>
</tr>
</tbody>
</table>
Cochranella ...25, 90, 135, 138, 139, 143
Cochranella euhystrix 139
Cochranella helenae66, 90, 138,
139, 140, 141
Cochranella nola139
Cophylinae 27
Craugastoridae25
Cryptobatrachidae22
Cycloramphidae22
Dendrobates tinctorius 23
Dendrobatidae 22, 23, 24, 107,
216
Dendropsophus 26, 89, 108, 158,
159
Dendropsophus koechlini159
Dendropsophus marmoratus ...74,
75, 107, 159
Dendropsophus melanargyreus .159
Dendropsophus minutus158, 159
Dendropsophus subocularis159
Dicroglossidae22
Dicymbe 15
Dimorphandra 15
Drosera kaieteurensis 15
Dyscophinae 27
Eleutherodactylidae ...22, 23, 25, 27,
66, 80, 100
Eleutherodactylus 239
Eperua 15
Erythroxylum 16
Eschweilera 15
G
Guttiferae 15
Gymnophiona17, 18, 62
H
Heleophrynidae 22
Heliconia 15
Hemiphractidae ...22, 23, 25, 26, 85
Hemiphractinae 25
Hemisotidae 22
Huia cavitympanum 21
Hyalinobatrachium ...25, 86, 90, 142,
143
Hyalinobatrachium crurifasciata
um 66, 90, 143, 144, 145, 146
Hyalinobatrachium igniculus 144
Hyalinobatrachium mondolfii143
Hyalinobatrachium taylori 87,
90, 142, 143, 146, 147
Hyla ... 163
Hyla boans 164
Hyla granosa 168, 176
Hyla maxima 164
Hylidae ...22, 23, 25, 26, 65, 66, 71,
73, 74, 75, 76, 80, 99, 101, 102
Hylinae 26
Hylodidae 22
Hyperoliidae 22
Hypsiboas 26, 89, 108, 162, 163,
172
Hypsiboas boans107, 163, 164,
165
Hypsiboas calcaratus . 65, 73, 107,
163, 166, 167
Hypsiboas cinerascens 39, 71, 76,
108, 163, 168, 169, 176
Hypsiboas geographicus 71, 107,
163, 170, 171, 188
Hypsiboas liliae 26, 73, 80, 89,
163, 172, 173
Hypsiboas ornatissimus 162
Hypsiboas sibleszi ... 163, 174, 175
Hypsiboas sp. 108, 163, 168, 176,
177
Hypsiboas wavrini 164
I
Ichthyophiidae 19
Incilius131
L
Lecythidae 15
Leguminosae 15
Leiopelmatidae 22
Leiuperidae 22, 76
Leptodactylidae .. 22, 23, 26, 27, 72,
73, 75, 80, 87, 100, 103
Leptodactylinae 26
Leptodactylus 27, 44, 67, 88, 107,
212, 213, 229

276
Leptodactylus amazonicus220
Leptodactylus discodactylus.......212
Leptodactylus knudseni ...75, 213,
214, 215
Leptodactylus lineatus ...107, 109,
213, 216, 217
Leptodactylus longirostris .72, 75,
103, 213, 218, 219
Leptodactylus lutzi75, 87, 100,
212, 213, 220, 221
Leptodactylus marmoratus213
Leptodactylus mystaceus107,
213, 222, 223
Leptodactylus pentadactylus ..214
Leptodactylus petersoni ..73, 80, 87,
213, 224, 225
Leptodactylus podicipinus224
Leptodactylus rhodomystax ...107,
213, 226, 227
Leptodactylus rugosus ...213, 228,
229
Leptodactylus wagneri ...224
Limnodynastidae22
Lissamphibia22
Lithobates palmipes23
Lithodytes213
M
Mantellidae22
Marantaceae15, 150
Megophryidae22
Melastomataceae15
Mertensophryne18, 21
Micrandra15
MicrIXalidae22
Microcaecilia20, 64, 244
Microcaecilia rabei244
Microcaecilia sp.244
Microhylidae22, 23, 27
Monotagma spicatum150
Myobatrachidae22
N
Nannophryne131
Nyctibatrachidae22
O
Odorrana tormota21
Oologyon cf. rubra200
Oophaga21
Osteocephalus26, 89, 178, 179,
182
Osteocephalus buckleyi .179, 180,
181, 186
Osteocephalus exophthalmus .89,
179, 182, 183
Osteocephalus leprieurii .73, 74,
102, 107, 179, 184, 185
Osteocephalus mutabor178
Osteocephalus oophagus .89, 178,
179, 180, 186, 187
Osteocephalus sp.186
Osteocephalus taurinus .107, 179,
188, 189, 248
Otophyne steyermarki23
P
Palmae15
Pelobatidae22
Pelodyridinae26
Pelodytidae22
Peltogyne15
Petropedetidae22
Phrynobatrachidae22
Phrynohyas207
Phrynohyas coriacea207
Phrynohyas resinifictrix207
Phyllomedusa26, 67, 88, 190, 191
Phyllomedusa atelopoides191
Phyllomedusa bicolor ..23, 39, 66,
71, 73, 107, 191, 192, 193, 248
Phyllomedusa vaillantii .107, 190,
191, 194, 195, 248
Phyllomedusinae26
Pipa27, 87, 234, 235
Pipa arrabali23, 71, 73, 80, 235,
236, 237, 248
Pipa aspera ..23, 71, 73, 80, 235
Pipa pipa234, 235
Pipa snethlageae234
Pipidae22, 23, 27, 71, 73, 80, 98
Plethodontidae20
Pleurodema brachyops ...76
Pristimantis28, 88, 238, 239
Pristimantis cf. inquinalis239,
240, 241
Pristimantis cf. marmoratus...107, 239, 242, 243

Pristimantis jasperi.................................239

Pristimantis jester..238

Ptychadenidae..................................22

Pyxicephalidae.............................22

Ranidae..................................22, 23

Ranixalidae....................................22

Rapateaceae..................................15

Rhacophoridae.............................22

Rhaebo...25, 88, 107, 124, 125, 131

Rhaebo guttatus .76, 98, 107, 124, 125, 126, 127

Rhaebo nasicus........125, 128, 129

Rhinatrema.................................20, 64, 246

Rhinatrema cf. bivittatum.........19, 246, 247

Rhinatrematidae.....................19, 20

Rhinella25, 44, 88, 107, 130, 131

Rhinella margaritifera.................131

Rhinella marina23, 66, 70, 73, 107, 130, 131, 132, 133

Rhinophrynidae............................22

Rubiaceae....................................15

Scolecomorphidae....................... 19

Siphonops annulatus...................... 19

Sirenidae.................................. 20

Sooglossidae..................................22

Stefania 26, 85, 89, 152

Stefani scalae.......................... 154

Stefania evansi...... 153, 154, 155

Stefania goini.......................... 153

Stefania roraimae.................. 152

Stefania woodleyi... 21, 153, 156, 157

Strabomantidae........ 22, 23, 27, 28

Synapturanus............. 27, 88, 230, 231

Synapturanus mirandaribeiroi.... 230

Synapturanus salseri.... 231, 232, 233

Tepuihyla.............................. 26, 89, 202, 203

Tepuihyla celsae........................ 203

Tepuihyla talbergae...... 16, 66, 202, 203, 204, 205

Trachycephalus...... 26, 89, 206, 207

Trachycephalus coriaceus........ 107, 206, 207, 208, 209

Trachycephalus hadroceps........ 206

Trachycephalus resinifictrix....... 107, 207, 210, 211

Trachycephalus venulosus........ 210

Typhlonectidae.................... 19, 20

Uraeotyphlidae............................ 19

Utricularia............................... 15

Utricularia humboldtii.............. 16

Xenohyla truncata....................... 21
Introduction to the taxonomy of the amphibians of Kaieteur National Park, Guyana

One of the impediments to understanding amphibian diversity in the Neotropics is the lack of complete, taxonomically accurate treatments of the amphibian species from geographically restricted areas. Botanists have long appreciated the importance of such studies and have reported the studies as florulas. The present work can be paraphrased as the amphibian faunula of Kaieteur National Park. A successful florula or faunula must be based on intensive sampling. It needs to be presented in such a way that users of the work can incorporate new taxonomic changes because sufficient information provided in the faunula/florula allows the worker to assess whether new taxonomic results apply to the faunula/florula involved. This is particularly critical for amphibian species, which are undergoing massive taxonomic revisions, especially in tropical regions. The authors of the Kaieteur National Park faunula present the data needed to determine the proper name(s) for Kaieteur National Park taxa.

Another feature of this work is the only detailed resource of which I am aware that documents how to successfully undertake amphibian fieldwork, including permit application procedures, equipment needed for work in remote areas, sampling methodology, collecting equipment, data collection, voucher specimen preservation, molecular study samples, advertisement call recordings, etc.

The amphibian faunula of Kaieteur National Park is a welcome addition to the altogether too few intensive amphibian publications of northern South America such as those for Santa Cecilia, Ecuador and Reserve Ducke, Brasil.

December 2008

Dr. Ronald Heyer
Division of Amphibians & Reptiles
National Museum of Natural History, Smithsonian Institution, USA